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% Asthma is a respiratory syndrome characterized by periods of reversible airflow | € &8 | Schematic of sample preparation and data analysis: s Several biological pathways were dysregulated during differentiation of epithelial cells from
obstruction, often in response to inhaled stimuli. In addition to symptoms, there is Air-liquid interface (ALI) culture + RNA isolation EIB(-) and EIB(+) asthmatic compared to non-asthmatic donors. Our findings suggest:

Expanded basal cell Collect primary human airway epithelial cells by bronchial brushing of control (n=5), EIB(-) asthmatic (n=5) and EIB(+) asthmatic (n=5) donors.

also significant structural airway remodeling associated with the disease. » («@>| @) ™ population (ck-5°) Induce mucociliary differentiation in air-liquid interface (ALI) culture. +* Deficient cellular energy production by oxidative phosphorylation and nucleotide

Collect large and small RNA at days 0, 5, 11 and 20 after initiation of ALI culture.

30-50% of asthmatic patients experience exercise-induced bronchonstriction (EIB)34. metabolism/transcription in EIB(-) cultures and delayed induction of these pathways in

C — Ciliated; G — Goblet; U — Undifferentiated; B — Basal Large RNA Sequencingand processing Small RNA

EIB is thought to involve defective epithelial water transport®, and EIB(+) patients have S A EIB(+). This may have implications for differentiation of specialized cell types with high
more pro-inflammatory mediators and columnar epithelial cells in induced sputum?* 4 per flow cell 8 per flow cell energy requirements, such as ciliated cells.

@
and greater numbers of intraepithelial mast cells compared to EIB(-) patients®. These H th 100-base pared-end reas 3o-base single-end reads . L . . . .
e 19 Bl neEl . > L) yp0 ESIS ** Impaired cell polarization and adhesion via actin-related pathways in EIB(-) cultures.
findings suggest epithelial differences between disease phenotypes. TopHat2 (version 2.0.6) Bowtie (version 0.12.7)

. . . . 0 I i I i i i i nsembl bui reate ile and estimate gene-level coverage miRBase release 0‘0 I I I i
2 The airway epithelium in asthma has been shown to be remodeled with loss of Distinct miRNA and mRNA expression profiles are responsible for defective Ensembl build 69 i Create BED il andcotimate gne-lovel covrage ... RBase release 19 +* Altered growth factor and MAPK signaling in asthmatic ALl cultures.

columnar epithelial cells!, and an expanded basal cell population?, suggesting chronic mducouI|arYt:|ffe;enF;it|o? ofa|r.waY edp'th(ethOI cellshfrom iSthmat'C ** Overall, airway epithelial cells from asthmatic donors did not induce key pathways
damage or impaired differentiation. Many of the phenotypic airway epithelial cell OHOIS WAL AN GWITNOBE EACICISEHNCHCE rORCHOCONSHEHON: Number of aligned reads per Ensembl gene/miRNA required for mucoci“ary differentiation.

differences observed in vivo are also evident in vitro, when cells are cultured at an air- Differential xoression et < MiRNAs regulate a complex network of mRNA targets in airway epithelial cells, which are

Calculate reads per million (RPM)

[ ] e [ ]
5 H H 1 il 1 1 1 P cale the log, + ene to mean o egative binomial mode . * 20 - . : c F
liquid interface (ALI) to induce mucociliary differentiation®. S perfl Al ms S Ve B Y AR consistent with a transition from proliferation to differentiation over 20 days of ALl culture.
In poster A4885, we demonstrate that both EIB(-) and EIB(+) ALI cultures had impaired e K ZE— “*We did not identify any miRNAs that were dysregulated between disease phenotypes

ciliary differentiation, but only EIB(-) had increased numbers of cytokeratin 5- 1. Perform a global analysis of mMRNAs and miRNAs that are differentially- Perform hierarchical clustering . 0 . o
: : o : " : o o and generate heatmap during mucociliary differentiation in vitro.
expressing basal cells, suggesting epithelial differences in specific asthma phenotypes. expressed between disease groups during differentiation. . _ L ! _ _ _
*These data provide insight into the molecular mechanisms that regulate epithelial

¢ This study aims to understand the mechanisms of RNA expression and its effect on 2. Identify important miRNA-mRNA interactions that regulate mucociliary Principal KEGG pathway analysis Correlation of miRNA and mRNA . o . . .
mucociliary differentiation of airway epithelial cells from EIB(+) and EIB(-) asthma. differentiation in vitro. naiyels (SATHER genome.dule.ec MirConn (apmircommtce it ) differentiation in vitro, and identify key pathways that are altered in asthma.

Figure 4. MicroRNA-mRNA networks regulate the

: : . transition from proliferation to differentiation in ALI culture
Figure 1. Global analysis of RNA expression Nuc:base _—
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RESUItS Figure 3. Biological pathways related to cytoskeleton dynamics and cellular metabolism
are aberrantly expressed in asthmatic-derived ALI cultures
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Figure 3. (A) The 1564 differentially-expressed genes for group:time term were hierarchically clustered using the complete linkage method into four groups as indicated by numbered boxes on /@

Time 18,527 . L . . . e g
the dendrogram at left. Each row of the heatmap represents one gene, while each column represents one sample. Red indicates expression (by Z-score) above the median for a given gene, and

Group:Time Interaction 1564 0 blue indicates expression below the median. (B) KEGG pathways enriched in each cluster of differentially-expressed genes using GATHER (gather.genome.duke.edu). The Bayes factor and false
discovery rate (FDR) for the enrichment of each pathway are provided. (C) Kinetics of pathway expression in each cluster are expressed as mean fold change compared to the mean RPM in
control day 0 (dashed horizontal line) for control (left column), EIB(-) (middle column) and EIB(+) (right column) groups. Genes in each pathway are listed at right.

Figure 4. Networks regulated by miRNAs that (A) decreased by >2-fold (blue squares) and (B) increased by >2-fold (red squares)
between day 0 and 20 of differentiation in air-liquid interface culture. Green triangles denote transcription factors, while yellow
circles denote genes. Red lines indicate negative regulation (suppression), while green lines indicate positive regulation
(activation) of targets. Targets that were enriched for specific gene ontologies, as determined by GATHER, are shown in dashed
circles and labeled accordingly.

Figure 2. Summary of analyses of differential expression. The number of ENSG gene IDs (mRNA) or
mature miRNAs is given for each step. Total aligned sequencing reads were analyzed by two-way ANOVA
and filtered as described. To understand the processes underlying impaired epithelial differentiation in

asthma, the 1564 genes with a false discovery rate (FDR) <0.05 were selected for further analysis. Refe rences Acknowledgments
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