
Negative binomial model
Filter: 1) >1 read in every sample

2) Median reads across all samples > 20
3) Negative binomial model converges

 Asthma is a respiratory syndrome characterized by periods of reversible airflow
obstruction, often in response to inhaled stimuli. In addition to symptoms, there is
also significant structural airway remodeling associated with the disease.

 30-50% of asthmatic patients experience exercise-induced bronchonstriction (EIB)3,4.
 EIB is thought to involve defective epithelial water transport5, and EIB(+) patients have

more pro-inflammatory mediators and columnar epithelial cells in induced sputum4

and greater numbers of intraepithelial mast cells compared to EIB(-) patients6. These
findings suggest epithelial differences between disease phenotypes.

 The airway epithelium in asthma has been shown to be remodeled with loss of
columnar epithelial cells1, and an expanded basal cell population2, suggesting chronic
damage or impaired differentiation. Many of the phenotypic airway epithelial cell
differences observed in vivo are also evident in vitro, when cells are cultured at an air-
liquid interface (ALI) to induce mucociliary differentiation2.

 In poster A4885, we demonstrate that both EIB(-) and EIB(+) ALI cultures had impaired
ciliary differentiation, but only EIB(-) had increased numbers of cytokeratin 5-
expressing basal cells, suggesting epithelial differences in specific asthma phenotypes.

 This study aims to understand the mechanisms of RNA expression and its effect on
mucociliary differentiation of airway epithelial cells from EIB(+) and EIB(-) asthma.
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Specific Aims

Methods

Figure 4. MicroRNA-mRNA networks regulate the 
transition from proliferation to differentiation in ALI culture

Results

1. Perform a global analysis of mRNAs and miRNAs that are differentially-
expressed between disease groups during differentiation.

2. Identify important miRNA-mRNA interactions that regulate mucociliary 
differentiation in vitro.

Hypothesis
Distinct miRNA and mRNA expression profiles are responsible for defective 

mucociliary differentiation of airway epithelial cells from asthmatic 
donors with and without exercise-induced  bronchoconstriction. 

Conclusions
Several biological pathways were dysregulated during differentiation of epithelial cells from

EIB(-) and EIB(+) asthmatic compared to non-asthmatic donors. Our findings suggest:
Deficient cellular energy production by oxidative phosphorylation and nucleotide

metabolism/transcription in EIB(-) cultures and delayed induction of these pathways in
EIB(+). This may have implications for differentiation of specialized cell types with high
energy requirements, such as ciliated cells.

 Impaired cell polarization and adhesion via actin-related pathways in EIB(-) cultures.
Altered growth factor and MAPK signaling in asthmatic ALI cultures.
Overall, airway epithelial cells from asthmatic donors did not induce key pathways

required for mucociliary differentiation.
MiRNAs regulate a complex network of mRNA targets in airway epithelial cells, which are

consistent with a transition from proliferation to differentiation over 20 days of ALI culture.
We did not identify any miRNAs that were dysregulated between disease phenotypes

during mucociliary differentiation in vitro.
These data provide insight into the molecular mechanisms that regulate epithelial

differentiation in vitro, and identify key pathways that are altered in asthma.
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Figure 3. Biological pathways related to cytoskeleton dynamics and cellular metabolism 
are aberrantly expressed in asthmatic-derived ALI cultures
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Figure 3. (A) The 1564 differentially-expressed genes for group:time term were hierarchically clustered using the complete linkage method into four groups as indicated by numbered boxes on
the dendrogram at left. Each row of the heatmap represents one gene, while each column represents one sample. Red indicates expression (by Z-score) above the median for a given gene, and
blue indicates expression below the median. (B) KEGG pathways enriched in each cluster of differentially-expressed genes using GATHER (gather.genome.duke.edu). The Bayes factor and false
discovery rate (FDR) for the enrichment of each pathway are provided. (C) Kinetics of pathway expression in each cluster are expressed as mean fold change compared to the mean RPM in
control day 0 (dashed horizontal line) for control (left column), EIB(-) (middle column) and EIB(+) (right column) groups. Genes in each pathway are listed at right.
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hsa00240 Pyrimidine metabolism 12 9228 5.1x10-5

hsa00230 Purine metabolism 11 14 .025
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Figure 1. Global analysis of RNA expression 
during epithelial differentiation in vitro

Figure 1. Principal component analysis was used to assess variance in expression of (A) mRNA and
(B) miRNA between all samples, using reads per million (RPM) of all features that passed filtering
criteria. Donor groups are differentiated by symbol, and timepoints by colour. X-axes are principal
component (PC) 1, y-axes PC2, and the contribution to overall variance is given as a percentage in
brackets.
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Figure 2. Summary of differentially-expressed     
transcripts between donor groups during ALI culture
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Schematic of sample preparation and data analysis:

mRNA microRNA

Unique genes/miRNA identified

FDR q<0.05 for each two-way ANOVA term

55,841 901

Filtered genes/miRNA identified 21,876 437

Statistical analysis by two-way ANOVA

Figure 2. Summary of analyses of differential expression. The number of ENSG gene IDs (mRNA) or
mature miRNAs is given for each step. Total aligned sequencing reads were analyzed by two-way ANOVA
and filtered as described. To understand the processes underlying impaired epithelial differentiation in
asthma, the 1564 genes with a false discovery rate (FDR) <0.05 were selected for further analysis.
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Air-liquid interface (ALI) culture + RNA isolation
Collect primary human airway epithelial cells by bronchial brushing of control (n=5), EIB(-) asthmatic (n=5) and EIB(+) asthmatic (n=5) donors. 

Induce mucociliary differentiation in air-liquid interface (ALI) culture. 
Collect large and small RNA at days 0, 5, 11 and 20 after initiation of ALI culture.

Differential expression analysis
Negative binomial model

Two-way ANOVA (group, time, group:time interaction)
Filter for Benjamini-Hochberg FDR q<0.05
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Figure 4. Networks regulated by miRNAs that (A) decreased by ≥2-fold (blue squares) and (B) increased by ≥2-fold (red squares)
between day 0 and 20 of differentiation in air-liquid interface culture. Green triangles denote transcription factors, while yellow
circles denote genes. Red lines indicate negative regulation (suppression), while green lines indicate positive regulation
(activation) of targets. Targets that were enriched for specific gene ontologies, as determined by GATHER, are shown in dashed
circles and labeled accordingly.
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